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Abstract 
General line shapes in the diffraction patterns of 
polymeric crystalline systems have been investigated 
on the basis of the interaction among the scattering 
units. A perturbation term has been incorporated into 
the Hamiltonian of the harmonic molecular lattice 
and the corresponding intensity distribution has been 
deduced from first principles with the assumption of 
elastic scattering. The various line broadenings, for- 
merly interpreted as results of microlattice strains 
within a crystal or paracrystallinity, have been shown 
to be special cases of the general consequence of the 
higher-order interactions. Finally, the explicit tem- 
perature dependence of a line width was deduced 
and verified against experimental work on polyethyl- 
ene single crystals. 

Introduction 
Extensive studies have been made in the past on 
line-shape analysis of the diffraction patterns of crys- 
talline polymeric systems (Buchanan, McCullough & 
Miller, 1966; Hosemann, 1951 ; Hosemann & Nilke, 
1964; Guinier, 1963; Ziman, 1972). Two consistent 
observations have been made in these studies, and 
these studies are not limited to polymeric crystals 
alone. Firstly, the peak heights decrease with increas- 
ing magnitude of the corresponding reciprocal-lattice 
vector [s] and, secondly, the line widths increase as 
Is] increases. The first of these effects has been suc- 
cessfully described by harmonic approximation of 
the interaction potential leading to the well-known 
Debye-Waller effect (Debye, 1914; Waller, 1923, 
1928). The second effect, however, does not lend itself 
to such general interpretation. The increase in line 
width as a function of Is] has been variously explained 
as a manifestation of paracrystallinity (Hosemann, 
1981; Hosemann & Wilke, 1964), or the presence of 
strain in the crystal lattice (Buchanan et al., 1966; 
Guinier, 1963; Wilson, 1949). Although these broad- 
enings can be interpreted in terms of a more general- 
ized interaction, scant attention has been paid to such 
a treatment. In fact, most interpretations of line-width 
broadening are based on direct-space analysis using 
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various statistical models. This ad hoc description of 
the arrangement of scattering units leaves out any 
discussion related to the nature of interaction among 
these particles leading to line-shape changes. Also, 
no explicit temperature dependence of the line width 
is obtainable from these treatments. 

The Debye-Waller effect, which is a direct con- 
sequence of harmonic interaction of the lattice, is 
manifested in a decrease of diffraction intensities as 
the scattering angle and temperature increases 
(Guinier, 1963; Debye, 1914; Waller, 1923, 1928). 
Changes in line shapes, however, are not accounted 
for by such harmonic effects (Guinier, 1963; Vain- 
shtein, 1966). Extensive theoretical studies have been 
made to arrive at the observed line-shape broadening 
in the diffraction patterns on the basis of static disor- 
ders (Hoseworth, 1951; Hosemann & Wilke, 1964; 
Guinier, 1963). In these treatments, displacement 
from equilibrium lattice position are selected in an 
ad hoc manner. 

In the present paper an investigation is made on 
the line shapes that can be expected when the 
individual scattering units 'see' an effective higher- 
order interaction potential. Although the special cases 
of paracrystallinity, finite crystal size and lattice strain 
will be explored, the treatment will be kept very 
general. The specific goal is not only to put the two 
types of effects discussed earlier on the same footing, 
but to arrive at relevant correction terms that can be 
used in structure calculations. Finally, an explicit 
temperature dependence of line width will be 
deduced and compared to experiment. 

Theory 
The effective electron density p(r) of the molecular 
crystal lattice is given by convoluting the molecular 
electron density p=(r) with the disposition functions 
A(r) (Vainshtein, 1966). As outlined in this treatment, 
one can express p(r) =Pm (r)A(r). Ideally, the disposi- 
tion function for a static point lattice is a series of 
delta functions. This results in delta-function line 
shapes in the diffraction pattern. However, in con- 
junction with an anharmonic force field at higher 
temperature, such point lattice approximation fails. 
The disposition function in that case can be chosen as 

N 
A(r)=  ~ a ( r - r j ) ,  

j=l 
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where N = number of scattering units present in the 
crystal and a(r) is an arbitrary function dependent  
on the interaction potential. The structure amplitude, 
the Fourier transform of p(r), will be given by 

F(s) = Fm(s)b(s), (1) 

where Fm (s) = F[pm (r)], F--- Fourier transform 

N 

b(s) = F[A(r)]  = E exp (2Iris. rs)F[a(u)] 
j=l (2) 
U - -  t - - t j .  

Evidently, the choice of a (u) will determine the nature 
of b(s) and hence F(s). The term a(u), on the other 
hand, depends on the choice of the interaction poten- 
tial. The simplest, most tractable, and yet general 
form of this potential we can use is similar to the one 
proposed by Einstein, where no dispersion is 
envisaged. Each scattering unit sees an effective 
potential V(rs), which is independent of the position 
of every other unit. The Hamiltonian then assumes 
the form 

N 

H= Y. [p2/2m + V(rj.)], 
j = l  

where Ps = momentum of the j th  scattering unit and 
m = mass of the scattering unit. 

Using the Maxwell-Boltzmann distribution we can 
define a(r) as 

N 

f dp N I dr"  E 8( , - r j )  exp (-flH) 
j = l  

a ( r ) -  I dP N I drN exp (-fill) 

N exp [ - f lV(r) ]  
= L exp [-f lY(r)] ,  

- ~ dr exp [-13 V(r)] 

where/3 = 1/kT and L =  N/~ dr exp I-f lY(r)] .  
Putting this back in (2), one obtains 

N 

b(s) = L E exp (27ris- rs)F{ex p I-flY(u)]}. (4) 
j = l  

In general, for one dimension, V(u) can be written 
in the form 

V(u)= ½yoU 2 + y(u) (5) 
h a r m o n i c  t e r m  all o t h e r  t e r m s  

As mentioned earlier, the harmonic term 1/2yoU 2 
leads to the Debye-Waller factor, which affects the 
total intensity of the diffraction maxima. However, 
the harmonic term does not result in any modification 
of the line shapes. It is the second term, T(u), on the 
other hand, which is responsible for the line broaden- 
ing and henceforth it will be referred to as the anhar- 
monic term. It is assumed that T(u) is analytic over 
the whole range of u. Thus, substituting in (3), we get 

a ( u ) =  L! exp [-½YoflU2- fly(u)], 

(3) 

where L~ is the proper front factor in one-dimension 

oo u" d" [ 
exp [-fly(u)]= ~ exp [-fly(u)] 

.=o n! dun ]u=o 
CO n OO 

= pI(T), 
= " 1=0  

where 

dn I du" exp[-fly(u)] = p'2(T) 
u = 0  1=0  

are the position-independent constants. 
Thus, 

oo oo 

a(u) = LI exp (-½YoflU 2) ~ ~ p-f-~ u" 
t=o n=o n ! 

oo oo 

Fa(u)=L1 E E P~'(-1)"(27r)"/2 
.=0/:o n !(27r)"i" (yofl/21r) ('+1)/2 

x exp [ - 2  zr 2s2/Yofl]/-/.[2~sl (yofl)l/2] 

where H.[2~s/(yofl) 1/2] is the Hermite polynomial 
of degree n. 

N 

b(s) = L1 ~ exp (27risxj) 
j = l  

× ~ p~'(-1)" 

, -o l=o n !i"( yofl ) ('+I)/2 
x exp [ - 2  Ir =s2/Yofl ]/-/.[2 ~s/( Yofl ),/2]. 

The quantity of interest is [b(s)] 2, which is propor- 
tional to the intensity recorded on the film or collected 
by the relevant detector. 

N N 

Ib(s)12= L 2 ~ ~ exp [2"a'is(xj--Xk)] 
j = l  k = l  

f i  f i  ~ f i  P:'q""x2crexp(-4rr2/Y°fl)s2 
n = 0  m = 0  n ' = 0  m'=O n I m  I im+n(yo f ) (m+n+2) /2  

XHm(~)Hn(~), 
where s r =  27rs/(yofl) l/=. 

Substituting 

/1 
r n, - -  

p,",(2~r) '/2 

i"( yofl )("+')/2' 

tm'-- im( Tofl )(m+l)/2 
N N 

Ib(g')l~= L~ ~ ~ exp[2cris(xj--Xk)]. 
j = l  k = l  

X E rn'tm' 
n = 0  m = 0  n ' = 0  m ' = 0  / ' / l m  ! 

xexp (-~2)Hm(~)Hn(¢). 
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Using the generating function for Hermite poly- 
nomials (Arfken, 1966): 

oo oo tl trl 

~ exp (_¢2)Hm( f )Hn(¢)  __r"' __t"" 
n! m! 

m = 0  n = 0  

= exp (~"- r,,,- t,,,,)2 + 2rn'tm']. 

It is easy to show for a periodic lattice that 

N N sin e 7rNas 
~ e x p [ 2 7 r i s ( x j - x k ) ] -  sine a s , 

j = 0  k = 0  

where the lattice periodicity a = x j -  xj+~. 
Thus, 

Ib(s)[2 = L~ sin2 rrNas 
sin 2 7ras 

x ~ exp [ - ( ~ ' -  r,,.- t,,,,) 2 + 2r,,.t,,,]. (6) 
n ' = 0  m ' = 0  

The derivation of [b(s)] 2 has been completely general 
so far. The first term in the expression of [b(s)] 2, that 
is sin 2 7rNas/sin 2 rras, is the familiar interference 
function. It is the second term, however, that contains 
the modulation effect that is added to the ideal first 
term owing to the nature of the potential. Below we 
derive the detail implication and the specified special 
cases from the second term. 

Special cases. To extract the full meaning of the 
second term, let us make the following choices for 
r n, and t,,,, 

l 4-rr(n' + m ' ) / a  
3'off (r,,,+t,,,,) [Vo+ Wo(n +m')2] 2 (7) 

( n ' + m ' ) 2 / a  2 
(rn,-  t , , ,)2-1n ( l+ n '+ m ' ) =  

[Vo+ Wo( n' + m')2] 2 
(8) 

and 

477" z 1 47r 2 
- - +  - ( 9 )  
Aofl ( Vo Woh2) 2 3,0/3' 

where n', m' and h are all integers, Vo, Wo and Ao 
are constants. The sole purpose of making such 
choices has been to cast the general expression in (6) 
into a familiar form [(10)] without introducing any 
redundancies. In other words, no new parameter has 
been introduced. 

With this choice of terms and further algebraic 
simplification (see Appendix), we obtain 

]b(s )12 - -  L 2 sins 7rNas exp ( - 4  71-2/flAo sE) 
sin s 7ras 

× ~ e x p - [ ( s - h / a ) 2 / ( V o  + WohE)2]. 
h = O  

(lo) 

The various terms in this expression can be inter- 
preted as follows: 

1. The first term, which is the inference term, has 
maxima at s - - h / a ,  where h is an integer. The peak 
heights are of the order of N 2, where N is the number 
of molecular units in the crystal and line width (A1) 
is of the order of 1/Na, where a is the lattice para- 
meter. 

2. exp - (47rEsE/Ao[3) is due to the harmonic vibra- 
tions and it reduces the peak heights in an exponential 
fashion. A comparison with the Debye-Waller tem- 
perature factor exp -2B(sin 2 0/)t 2) gives 
(47r2/flAo) = B/2 .  Note that this term does not affect 
the line widths of the peaks. 

3. The third term, Y~h=0 exp --[(s-- h / a ) 2 / ( V o +  
Woh~)2], is contributed by the additional term in the 
potential (other than harmonic). It has maxima at 
s = h / a  just as in the first term. The effective peak 
height of a reflection is not affected at all by this term. 
The line widths, however, are considerably increased 
by its presence. The contribution to line widths from 
this term for a reflection h00 is given by 

A 2  _ Sreflection I ( S ') ds'  Vo + Woh 2 (11) 
- I(0) - srr I/2 

Thus, A2 apparently increases as h 2. 

Finally, the total line width obtained by combining 
contributions from the first and third term, 

AE= U , + ( V l h E +  W, h4), (12) 

where U1, V~ and Wl are a new set of constants 
defined in terms of A~, Vo and Wo. If F~, W~ = 0, then 
A 2 = U~, which relates to the familiar crystal size effect 
(Sherrer, 1918) Ui = 1/L~, where L~ is the mean- 
square size of the crystal. If, on the other hand, W~, 
U~ = 0, then A 2= Vih 2. At  constant temperature, this 
type of dependence of A2 on h is identical with what 
is observed when there is lattice strain in the crystal 
(Buchanan et al., 1966; Wilson, 1949). 

If, on the other hand, U~ =0,  VI =0,  then A 2= 
W l h  4. Comparison with Hosemann's analysis shows 
that this h 4 dependence is similar to that of a paracrys- 
talline crystal at a given temperature (Hosemann, 
1951; Hosemann & Wilke, 1964; Guinier, 1963). 

Thus, in the above three special cases, we have 
been able to arrive at the experimentally observed 
functional relationship between the line width and 
the reciprocal-lattice vector. This was achieved by 
choosing a suitable set of transformations given by 
(7), (8) and (9). In other words, (7), (8) and (9) are 
relationships describing the physical nature of the 
system leading to the experimentally observed 
features in the diffraction pattern. To investigate the 
temperature dependence of the line width, let us 
analyze one of these relationships further. 
Dimensional analysis of (9) shows that Vo and Wo 



M. THAKUR, S. K. TRIPATHY A N D  J. B. LANDO 29 

will have a temperature dependence of T -1/2 since 
7o is temperature independent (force constant, 
characteristic of the system). Hence, V~ and W~ will 
have a temperature dependence of T -~. Thus, the 
functional dependence of line width on temperature 
can be expressed as 

/t2= U~+C/T, 

where C is a constant independent of temperature. 
Hence, within a reasonable range, the line width is 
expected to decrease with increasing temperature. An 
experimental verification of this correlation has been 
made employing the data from detailed work by 
Krenzer & Ruland (1981) on single crystals of poly- 
ethylene. Their resulting width-temperature correla- 
tion curve for the 1 l0 line is shown in Fig. 1. The 
general shape of the curve remains almost the same 
for all other lines (010, 200, 100 etc.). In the correlation 
curve the three zones are related to changes caused 
by the fl and 7 relaxations. For any specific zone, as 
the plot shows, the width (A 2) maintains a linear 
relationship with the reciprocal temperature ( l / T ) ,  
in excellent accord with the theoretical prediction. 
For other lines (100, 010, 200 etc.) the agreement is 
equally good. This agreement between the experiment 
and the theory further implies that the relaxation (/3, 
7) processes are primarily assisted by anharmonic 
motions. 

Results and discussions 

We have shown in a very general manner that the 
line-width broadening in polymer diffraction patterns 
is caused by the complex nature of the interaction 
potential. The harmonic term alone is not sufficient 
to explain these effects. Detailed interpretation for 
line-width broadening has been presented by 
Hosemann, Guinier and others by a consideration of 
long-range disorder. We have shown here that 
adequate descriptions can be furnished on the basis 
of an anharmonic interaction potential alone. It is 
important to note that the potential that was used in 
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Fig. 1. Temperature dependence of the line width for polyethylene. 
(Data from Krenzer & Ruland, 1981). 

this treatment, although similar, is not identical to 
that of Einstein since the harmonic force constant 
(70) for any set of planes has been assumed to be a 
function of the corresponding interplanar spacing 
[see (9)]. In this analysis, although no specific form 
of the additional term in the potential [7(u)]  was 
assumed (except that it should be well behaved), a 
comprehensive and unified correlation between line 
width and the interaction potential was established. 
The explicit temperature dependence of a line width 
was also deduced and successfully verified against 
experimental work on polyethylene. In principle, the 
nature of the interaction potential can be established 
as a measure of the temperature dependence of the 
line widths. In a subsequent paper we will show how 
the inclusion of a specific high-order term in the 
interaction potential can lead to very specific 
anomalies in the observed diffraction patterns. This 
may provide an avenue for solving crystal structures 
where such anomalies are observed in the diffraction 
pattern. 

The nature of anharmonicity, if it can be estab- 
lished, may lead to an understanding of the nature 
of the crystal itself at the molecular level. Criteria 
can be established between the existence of a specific 
higher-order term in the anharmonic interaction 
potential and the nature of the electron cloud that 
participates in the scattering process. In short, the 
unified nature of the present approach opens up many 
new possibilities. In a subsequent paper, this possibil- 
ity will be explored in the specific cases of some 
polydiacetylene crystal diffraction patterns. 

Finally, it should be noted that the emphasis has 
been to probe the various anharmonic effects on the 
diffraction intensities from 'first principles'. The 
expression in (6), containing anharmonic contribu- 
tions, is completely general. With proper choices of 
the expansion coefficients (r,,, tin,), we hope it will 
be possible to account for other important observa- 
tions related to crystalline solids. Some specific work 
in this direction is presently under way. 

The partial support of this work by the Office of 
Naval Research under Contract O NR N001483 K0246 
is gratefully acknowledged. 

APPENDIX 

Using (7), (8) and (9), it is fairly simple to show that 
(6) transforms to 

I b(s)l 2 = L~ sin2sin21rNaslras exp - ~--~o s2 

x ~ ~_. exp[-ln(l+n'+m')] 
n ' = 0  m ' = 0  

[s-(n"+ m') la]  2 

[ Vo + Wo(n' + m")2] 2" 
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Now 

exp [ - l n  (1 + n ' +  m')] 
n'=0 m'=0 

[ s - ( n ' +  m')/a]2 
- [ V o +  Wo(n'+m')2] 2 -  (h+l ) fn  

h=O 

where h is an integer and 

I s -  ( n '+  m') /a]  2 
f.,+,., = exp [ - l n  (l + n' + m')] 

[ Vo + Wo(n' + m')2] 2" 

However, (h + 1) exp [ - In  ( I+  h)] = 1. Hence, 

[b(s)12=L~sin27rNaSexP(sin 27ras - ~o4"/r2 ) s2 

[ x __ exp ( V  o o+ Woh2)2.]" 
h=0 
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Abstract Introduction 

Nonsystematic absences along certain reciprocal- 
lattice directions have been observed in the diffraction 
patterns of the macroscopic single crystals of various 
materials, both in our laboratory and in the literature. 
These extinctions are not space-group related nor are 
they the result of secondary scattering. Incorporation 
of the lowest-order anharmonic interaction terms, 
cubic and quartic in displacement, into the Hamil- 
tonian of the molecular lattice, has made it possible 
to give a complete interpretation of these observa- 
tions. A general intensity distribution was deduced 
with the assumption of elastic scattering. The final 
result provides new insight into the interaction of 
molecular units within a crystal and reveals new 
avenues for the solution of some unsolved crystal 
structures. A general procedure for the application 
of the required correction term to the intensity distri- 
bution is outlined, along with appropriate examples. 

* Present address: GTE Laboratories, Incorporated, 40 Sylvan 
Road, Waltham, MA 02254, USA. 

The functional dependence of the line shape in a 
diffraction pattern on the nature of the interaction 
potential among the scattering entities has been estab- 
lished (Thakur, Tripathy & Lando, 1985). It has been 
shown that the monotonic decrease in the peak 
intensities is a consequence of the harmonic part of 
the interaction potential (Debye-Waller effect). The 
changes in the line shape, on the other hand, were 
generally interpreted to be a function of the nonhar- 
monic aspect of the interaction potential. The para- 
crystallinity, finite crystal size and presence of lattice 
strain were investigated using a very general form of 
the potential. 

It has been observed in our laboratory that certain 
macroscopic crystalline systems have nonsystematic 
absences in their diffraction patterns, although 
intensities calculated from their crystal structures 
should be observed. Similar observations, not accoun- 
ted for in detail, were made by various other workers 
(Akiyama, Tanaka & Iitaka, 1970; Shannon & Katz, 
1970; Srivastava & Przybylska, 1970; Mazhar-ul- 
Haque & Caughlan, 1970; Torii & Iitaka, 1970). In 
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